Zero phase delay with relax incident condition in photonic crystals
نویسندگان
چکیده
منابع مشابه
Negative Index Photonic Crystals Superlattices and Zero Phase Delay Lines"
An intense interest in negative index metamaterials (NIMs) [1-2] has been witnessed over the last years. Metal based NIMs [3-11] have been demonstrated at both microwave and infrared frequencies with a motivation mainly coming from the unusual physical properties and potential use in many technological applications [12-21]; however, they usually have large optical losses in their metallic compo...
متن کاملZero phase delay in negative-refractive-index photonic crystal superlattices
We show that optical beams propagating in path-averaged zero-index photonic crystal superlattices can have zero phase delay. The nanofabricated superlattices consist of alternating stacks of negative index photonic crystals and positive index homogeneous dielectric media, where the phase differences corresponding to consecutive primary unit cells are measured with integrated Mach-Zehnder interf...
متن کاملPhase Properties of One-Dimensional Quaternary Photonic Crystals
In this paper, properties of reflection phase in one-dimensional quaternary photonic crystals combining dispersive meta-materials and positive index materials are investigated by transfer matrix method. Two omnidirectional band gaps are located in the band structure of considered structure. However, we limit our studies to the frequency range of the second wide band gap. We observe that the val...
متن کاملDirac directional emission in anisotropic zero refractive index photonic crystals
A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone ...
متن کاملDistinguishing zero-group-velocity modes in photonic crystals
We examine differences between various zero-group-velocity modes in photonic crystals, including those that arise from Bragg diffraction, anticrossings, and band repulsion. Zero-group velocity occurs at points where the group velocity changes sign, and therefore is conceptually related to “left-handed” media, in which the group velocity is opposite to the phase velocity. We consider this relati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2013
ISSN: 1094-4087
DOI: 10.1364/oe.21.029860